多项式牛顿迭代
描述
给定多项式 \(g\left(x\right)\),已知有 \(f\left(x\right)\) 满足:
\[
g\left(f\left(x\right)\right)\equiv 0\pmod{x^{n}}
\]
求出模 \(x^{n}\) 意义下的 \(f\left(x\right)\)。
Newton's Method
考虑倍增。
首先当 \(n=1\) 时,\(\left[x^{0}\right]g\left(f\left(x\right)\right)=0\) 的解需要单独求出。
假设现在已经得到了模 \(x^{\left\lceil\frac{n}{2}\right\rceil}\) 意义下的解 \(f_{0}\left(x\right)\),要求模 \(x^{n}\) 意义下的解 \(f\left(x\right)\)。
将 \(g\left(f\left(x\right)\right)\) 在 \(f_{0}\left(x\right)\) 处进行泰勒展开,有:
\[
\sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}}
\]
因为 \(f\left(x\right)-f_{0}\left(x\right)\) 的最低非零项次数最低为 \(\left\lceil\frac{n}{2}\right\rceil\),故有:
\[
\forall 2\leqslant i:\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv 0\pmod{x^{n}}
\]
则:
\[
\sum_{i=0}^{+\infty}\frac{g^{\left(i\right)}\left(f_{0}\left(x\right)\right)}{i!}\left(f\left(x\right)-f_{0}\left(x\right)\right)^{i}\equiv g\left(f_{0}\left(x\right)\right)+g'\left(f_{0}\left(x\right)\right)\left(f\left(x\right)-f_{0}\left(x\right)\right)\equiv 0\pmod{x^{n}}
\]
\[
f\left(x\right)\equiv f_{0}\left(x\right)-\frac{g\left(f_{0}\left(x\right)\right)}{g'\left(f_{0}\left(x\right)\right)}\pmod{x^{n}}
\]
例题
多项式求逆
设给定函数为 \(h\left(x\right)\),有方程:
\[
g\left(f\left(x\right)\right)=\frac{1}{f\left(x\right)}-h\left(x\right)\equiv 0\pmod{x^{n}}
\]
应用 Newton's Method 可得:
\[
\begin{aligned}
f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\frac{1}{f_{0}\left(x\right)}-h\left(x\right)}{-\frac{1}{f_{0}^{2}\left(x\right)}}&\pmod{x^{n}}\\
&\equiv 2f_{0}\left(x\right)-f_{0}^{2}\left(x\right)h\left(x\right)&\pmod{x^{n}}
\end{aligned}
\]
时间复杂度
\[
T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)
\]
多项式开方
设给定函数为 \(h\left(x\right)\),有方程:
\[
g\left(f\left(x\right)\right)=f^{2}\left(x\right)-h\left(x\right)\equiv 0\pmod{x^{n}}
\]
应用 Newton's Method 可得:
\[
\begin{aligned}
f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{f_{0}^{2}\left(x\right)-h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}}\\
&\equiv\frac{f_{0}^{2}\left(x\right)+h\left(x\right)}{2f_{0}\left(x\right)}&\pmod{x^{n}}
\end{aligned}
\]
时间复杂度
\[
T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)
\]
多项式 exp
设给定函数为 \(h\left(x\right)\),有方程:
\[
g\left(f\left(x\right)\right)=\ln{f\left(x\right)}-h\left(x\right)\pmod{x^{n}}
\]
应用 Newton's Method 可得:
\[
\begin{aligned}
f\left(x\right)&\equiv f_{0}\left(x\right)-\frac{\ln{f_{0}\left(x\right)}-h\left(x\right)}{\frac{1}{f_{0}\left(x\right)}}&\pmod{x^{n}}\\
&\equiv f_{0}\left(x\right)\left(1-\ln{f_{0}\left(x\right)+h\left(x\right)}\right)&\pmod{x^{n}}
\end{aligned}
\]
时间复杂度
\[
T\left(n\right)=T\left(\frac{n}{2}\right)+O\left(n\log{n}\right)=O\left(n\log{n}\right)
\]
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用