最大公约数
定义
最大公约数即为 Greatest Common Divisor,常缩写为 gcd。
一组整数的公约数,是指同时是这组数中每一个数的约数的数。\(\pm 1\) 是任意一组整数的公约数。
一组整数的最大公约数,是指所有公约数里面最大的一个。
那么如何求最大公约数呢?我们先考虑两个数的情况。
欧几里得算法
过程
如果我们已知两个数 \(a\) 和 \(b\),如何求出二者的最大公约数呢?
不妨设 \(a > b\)
我们发现如果 \(b\) 是 \(a\) 的约数,那么 \(b\) 就是二者的最大公约数。 下面讨论不能整除的情况,即 \(a = b \times q + r\),其中 \(r < b\)。
我们通过证明可以得到 \(\gcd(a,b)=\gcd(b,a \bmod b)\),过程如下:
证明
设 \(a=bk+c\),显然有 \(c=a \bmod b\)。设 \(d \mid a,~d \mid b\),则 \(c=a-bk, \frac{c}{d}=\frac{a}{d}-\frac{b}{d}k\)。
由右边的式子可知 \(\frac{c}{d}\) 为整数,即 \(d \mid c\),所以对于 \(a,b\) 的公约数,它也会是 \(b,a \bmod b\) 的公约数。
反过来也需要证明:
设 \(d \mid b,~d\mid (a \bmod b)\),我们还是可以像之前一样得到以下式子 \(\frac{a\bmod b}{d}=\frac{a}{d}-\frac{b}{d}k,~\frac{a\bmod b}{d}+\frac{b}{d}k=\frac{a}{d}\)。
因为左边式子显然为整数,所以 \(\frac{a}{d}\) 也为整数,即 \(d \mid a\),所以 \(b,a\bmod b\) 的公约数也是 \(a,b\) 的公约数。
既然两式公约数都是相同的,那么最大公约数也会相同。
所以得到式子 \(\gcd(a,b)=\gcd(b,a\bmod b)\)
既然得到了 \(\gcd(a, b) = \gcd(b, r)\),这里两个数的大小是不会增大的,那么我们也就得到了关于两个数的最大公约数的一个递归求法。
实现
C++ | |
---|---|
1 2 3 4 5 6 7 8 |
|
Java | |
---|---|
1 2 3 4 5 6 7 8 9 10 |
|
Python | |
---|---|
1 2 3 4 |
|
递归至 b == 0
(即上一步的 a % b == 0
)的情况再返回值即可。
根据上述递归求法,我们也可以写出一个迭代求法:
C++ | |
---|---|
1 2 3 4 5 6 7 8 |
|
Java | |
---|---|
1 2 3 4 5 6 7 8 |
|
Python | |
---|---|
1 2 3 4 |
|
上述算法都可被称作欧几里得算法(Euclidean algorithm)。
另外,对于 C++14,我们可以使用自带的 __gcd(a,b)
函数来求最大公约数。而对于 C++ 17,我们可以使用 <numeric>
头中的 std::gcd
与 std::lcm
来求最大公约数和最小公倍数。
如果两个数 \(a\) 和 \(b\) 满足 \(\gcd(a, b) = 1\),我们称 \(a\) 和 \(b\) 互质。
性质
欧几里得算法的时间效率如何呢?下面我们证明,欧几里得算法的时间复杂度为 \(O(\log n)\)。
证明
当我们求 \(\gcd(a,b)\) 的时候,会遇到两种情况:
- \(a < b\),这时候 \(\gcd(a,b)=\gcd(b,a)\);
- \(a \geq b\),这时候 \(\gcd(a,b)=\gcd(b,a \bmod b)\),而对 \(a\) 取模会让 \(a\) 至少折半。这意味着这一过程最多发生 \(O(\log n)\) 次。
第一种情况发生后一定会发生第二种情况,因此第一种情况的发生次数一定 不多于 第二种情况的发生次数。
从而我们最多递归 \(O(\log n)\) 次就可以得出结果。
事实上,假如我们试着用欧几里得算法去求 斐波那契数列 相邻两项的最大公约数,会让该算法达到最坏复杂度。
更相减损术
大整数取模的时间复杂度较高,而加减法时间复杂度较低。针对大整数,我们可以用加减代替乘除求出最大公约数。
过程
已知两数 \(a\) 和 \(b\),求 \(\gcd(a,b)\)。
不妨设 \(a \ge b\),若 \(a = b\),则 \(\gcd(a,b)=a=b\)。 否则,\(\forall d\mid a, d\mid b\),可以证明 \(d\mid a-b\)。
因此,\(a\) 和 \(b\) 的 所有 公因数都是 \(a-b\) 和 \(b\) 的公因数,\(\gcd(a,b) = \gcd(a-b, b)\)。
Stein 算法的优化
如果 \(a\gg b\),更相减损术的 \(O(n)\) 复杂度将会达到最坏情况。
考虑一个优化,若 \(2\mid a,2\mid b\),\(\gcd(a,b) = 2\gcd\left(\dfrac a2, \dfrac b2\right)\)。
否则,若 \(2\mid a\)(\(2\mid b\) 同理),因为 \(2\mid b\) 的情况已经讨论过了,所以 \(2 \nmid b\)。因此 \(\gcd(a,b)=\gcd\left(\dfrac a2,b\right)\)。
优化后的算法(即 Stein 算法)时间复杂度是 \(O(\log n)\)。
证明
若 \(2\mid a\) 或 \(2\mid b\),每次递归至少会将 \(a,b\) 之一减半。
否则,\(2\mid a-b\),回到了上一种情况。
算法最多递归 \(O(\log n)\) 次。
实现
高精度模板见 高精度计算。
高精度运算需实现:减法、大小比较、左移、右移(可用低精乘除代替)、判断奇偶。
C++
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
多个数的最大公约数
那怎么求多个数的最大公约数呢?显然答案一定是每个数的约数,那么也一定是每相邻两个数的约数。我们采用归纳法,可以证明,每次取出两个数求出答案后再放回去,不会对所需要的答案造成影响。
最小公倍数
接下来我们介绍如何求解最小公倍数(Least Common Multiple, LCM)。
定义
一组整数的公倍数,是指同时是这组数中每一个数的倍数的数。0 是任意一组整数的公倍数。
一组整数的最小公倍数,是指所有正的公倍数里面,最小的一个数。
两个数
设 \(a = p_1^{k_{a_1}}p_2^{k_{a_2}} \cdots p_s^{k_{a_s}}\),\(b = p_1^{k_{b_1}}p_2^{k_{b_2}} \cdots p_s^{k_{b_s}}\)
我们发现,对于 \(a\) 和 \(b\) 的情况,二者的最大公约数等于
\(p_1^{\min(k_{a_1}, k_{b_1})}p_2^{\min(k_{a_2}, k_{b_2})} \cdots p_s^{\min(k_{a_s}, k_{b_s})}\)
最小公倍数等于
\(p_1^{\max(k_{a_1}, k_{b_1})}p_2^{\max(k_{a_2}, k_{b_2})} \cdots p_s^{\max(k_{a_s}, k_{b_s})}\)
由于 \(k_a + k_b = \max(k_a, k_b) + \min(k_a, k_b)\)
所以得到结论是 \(\gcd(a, b) \times \operatorname{lcm}(a, b) = a \times b\)
要求两个数的最小公倍数,先求出最大公约数即可。
多个数
可以发现,当我们求出两个数的 \(\gcd\) 时,求最小公倍数是 \(O(1)\) 的复杂度。那么对于多个数,我们其实没有必要求一个共同的最大公约数再去处理,最直接的方法就是,当我们算出两个数的 \(\gcd\),或许在求多个数的 \(\gcd\) 时候,我们将它放入序列对后面的数继续求解,那么,我们转换一下,直接将最小公倍数放入序列即可。
扩展欧几里得算法
扩展欧几里得算法(Extended Euclidean algorithm, EXGCD),常用于求 \(ax+by=\gcd(a,b)\) 的一组可行解。
过程
设
\(ax_1+by_1=\gcd(a,b)\)
\(bx_2+(a\bmod b)y_2=\gcd(b,a\bmod b)\)
由欧几里得定理可知:\(\gcd(a,b)=\gcd(b,a\bmod b)\)
所以 \(ax_1+by_1=bx_2+(a\bmod b)y_2\)
又因为 \(a\bmod b=a-(\lfloor\frac{a}{b}\rfloor\times b)\)
所以 \(ax_1+by_1=bx_2+(a-(\lfloor\frac{a}{b}\rfloor\times b))y_2\)
\(ax_1+by_1=ay_2+bx_2-\lfloor\frac{a}{b}\rfloor\times by_2=ay_2+b(x_2-\lfloor\frac{a}{b}\rfloor y_2)\)
因为 \(a=a,b=b\),所以 \(x_1=y_2,y_1=x_2-\lfloor\frac{a}{b}\rfloor y_2\)
将 \(x_2,y_2\) 不断代入递归求解直至 \(\gcd\)(最大公约数,下同)为 0
递归 x=1,y=0
回去求解。
实现
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
Python | |
---|---|
1 2 3 4 5 |
|
函数返回的值为 \(\gcd\),在这个过程中计算 \(x,y\) 即可。
值域分析
\(ax+by=\gcd(a,b)\) 的解有无数个,显然其中有的解会爆 long long。
万幸的是,若 \(b\not= 0\),扩展欧几里得算法求出的可行解必有 \(|x|\le b,|y|\le a\)。
下面给出这一性质的证明。
证明
- \(\gcd(a,b)=b\) 时,\(a\bmod b=0\),必在下一层终止递归。
得到 \(x_1=0,y_1=1\),显然 \(a,b\ge 1\ge |x_1|,|y_1|\)。 - \(\gcd(a,b)\not= b\) 时,设 \(|x_2|\le (a\bmod b),|y_2|\le b\)。
因为 \(x_1=y_2,y_1=x_2-{\left\lfloor\dfrac{a}{b}\right\rfloor}y_2\)
所以 \(|x_1|=|y_2|\le b,|y_1|\le|x_2|+|{\left\lfloor\dfrac{a}{b}\right\rfloor}y_2|\le (a\bmod b)+{\left\lfloor\dfrac{a}{b}\right\rfloor}|y_2|\)
\(\le a-{\left\lfloor\dfrac{a}{b}\right\rfloor}b+{\left\lfloor\dfrac{a}{b}\right\rfloor}|y_2|\le a-{\left\lfloor\dfrac{a}{b}\right\rfloor}(b-|y_2|)\)
\(a\bmod b=a-{\left\lfloor\dfrac{a}{b}\right\rfloor}b\le a-{\left\lfloor\dfrac{a}{b}\right\rfloor}(b-|y_2|)\le a\)
因此 \(|x_1|\le b,|y_1|\le a\) 成立。
迭代法编写扩展欧几里得算法
首先,当 \(x = 1\),\(y = 0\),\(x_1 = 0\),\(y_1 = 1\) 时,显然有:
成立。
已知 \(a\bmod b = a - (\lfloor \frac{a}{b} \rfloor \times b)\),下面令 \(q = \lfloor \frac{a}{b} \rfloor\)。参考迭代法求 gcd,每一轮的迭代过程可以表示为:
将迭代过程中的 \(a\) 替换为 \(ax + by = a\),\(b\) 替换为 \(ax_1 + by_1 = b\),可以得到:
据此就可以得到迭代法求 exgcd。
因为迭代的方法避免了递归,所以代码运行速度将比递归代码快一点。
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 |
|
如果你仔细观察 \(a_1\) 和 \(b_1\),你会发现,他们在迭代版本的欧几里德算法中取值完全相同,并且以下公式无论何时(在 while 循环之前和每次迭代结束时)都是成立的:\(x \cdot a +y \cdot b =a_1\) 和 \(x_1 \cdot a +y_1 \cdot b= b_1\)。因此,该算法肯定能正确计算出 \(\gcd\)。
最后我们知道 \(a_1\) 就是要求的 \(\gcd\),有 \(x \cdot a +y \cdot b = g\)。
矩阵的解释
对于正整数 \(a\) 和 \(b\) 的一次辗转相除即 \(\gcd(a,b)=\gcd(b,a\bmod b)\) 使用矩阵表示如
其中向下取整符号 \(\lfloor c\rfloor\) 表示不大于 \(c\) 的最大整数。我们定义变换 \(\begin{bmatrix}a\\b\end{bmatrix}\mapsto \begin{bmatrix}0&1\\1&-\lfloor a/b\rfloor\end{bmatrix}\begin{bmatrix}a\\b\end{bmatrix}\)。
易发现欧几里得算法即不停应用该变换,有
令
那么
满足 \(a\cdot x_1+b\cdot x_2=\gcd(a,b)\) 即扩展欧几里得算法,注意在最后乘了一个单位矩阵不会影响结果,提示我们可以在开始时维护一个 \(2\times 2\) 的单位矩阵编写更简洁的迭代方法如
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 |
|
这种表述相较于递归更简单。
应用
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用