欧拉函数
定义
欧拉函数(Euler's totient function),即 \(\varphi(n)\),表示的是小于等于 \(n\) 和 \(n\) 互质的数的个数。
比如说 \(\varphi(1) = 1\)。
当 n 是质数的时候,显然有 \(\varphi(n) = n - 1\)。
性质
-
欧拉函数是积性函数。
积性是什么意思呢?如果有 \(\gcd(a, b) = 1\),那么 \(\varphi(a \times b) = \varphi(a) \times \varphi(b)\)。
特别地,当 \(n\) 是奇数时 \(\varphi(2n) = \varphi(n)\)。
-
\(n = \sum_{d \mid n}{\varphi(d)}\)。
证明
利用 莫比乌斯反演 相关知识可以得出。
也可以这样考虑:如果 \(\gcd(k, n) = d\),那么 \(\gcd(\dfrac{k}{d},\dfrac{n}{d}) = 1, ( k < n )\)。
如果我们设 \(f(x)\) 表示 \(\gcd(k, n) = x\) 的数的个数,那么 \(n = \sum_{i = 1}^n{f(i)}\)。
根据上面的证明,我们发现,\(f(x) = \varphi(\dfrac{n}{x})\),从而 \(n = \sum_{d \mid n}\varphi(\dfrac{n}{d})\)。注意到约数 \(d\) 和 \(\dfrac{n}{d}\) 具有对称性,所以上式化为 \(n = \sum_{d \mid n}\varphi(d)\)。
-
若 \(n = p^k\),其中 \(p\) 是质数,那么 \(\varphi(n) = p^k - p^{k - 1}\)。 (根据定义可知)
-
由唯一分解定理,设 \(n = \prod_{i=1}^{s}p_i^{k_i}\),其中 \(p_i\) 是质数,有 \(\varphi(n) = n \times \prod_{i = 1}^s{\dfrac{p_i - 1}{p_i}}\)。
证明
-
引理:设 \(p\) 为任意质数,那么 \(\varphi(p^k)=p^{k-1}\times(p-1)\)。
证明:显然对于从 1 到 \(p^k\) 的所有数中,除了 \(p^{k-1}\) 个 \(p\) 的倍数以外其它数都与 \(p^k\) 互素,故 \(\varphi(p^k)=p^k-p^{k-1}=p^{k-1}\times(p-1)\),证毕。
接下来我们证明 \(\varphi(n) = n \times \prod_{i = 1}^s{\dfrac{p_i - 1}{p_i}}\)。由唯一分解定理与 \(\varphi(x)\) 函数的积性
\[ \begin{aligned} \varphi(n) &= \prod_{i=1}^{s} \varphi(p_i^{k_i}) \\ &= \prod_{i=1}^{s} (p_i-1)\times {p_i}^{k_i-1}\\ &=\prod_{i=1}^{s} {p_i}^{k_i} \times(1 - \frac{1}{p_i})\\ &=n~ \prod_{i=1}^{s} (1- \frac{1}{p_i}) &\square \end{aligned} \]
-
实现
如果只要求一个数的欧拉函数值,那么直接根据定义质因数分解的同时求就好了。这个过程可以用 Pollard Rho 算法优化。
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 |
|
Python | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 |
|
注:如果将上面的程序改成如下形式,会提升一点效率:
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 |
|
Python | |
---|---|
1 2 3 4 5 6 7 8 9 10 |
|
如果是多个数的欧拉函数值,可以利用后面会提到的线性筛法来求得。 详见:筛法求欧拉函数
欧拉定理
与欧拉函数紧密相关的一个定理就是欧拉定理。其描述如下:
若 \(\gcd(a, m) = 1\),则 \(a^{\varphi(m)} \equiv 1 \pmod{m}\)。
扩展欧拉定理
当然也有扩展欧拉定理
证明和 习题 详见 欧拉定理
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用