跳转至

单调队列

引入

在学习单调队列前,让我们先来看一道例题。

例题

Sliding Window

本题大意是给出一个长度为 \(n\) 的数组,编程输出每 \(k\) 个连续的数中的最大值和最小值。

最暴力的想法很简单,对于每一段 \(i \sim i+k-1\) 的序列,逐个比较来找出最大值(和最小值),时间复杂度约为 \(O(n \times k)\)

很显然,这其中进行了大量重复工作,除了开头 \(k-1\) 个和结尾 \(k-1\) 个数之外,每个数都进行了 \(k\) 次比较,而题中 \(100\%\) 的数据为 \(n \le 1000000\),当 \(k\) 稍大的情况下,显然会 TLE。

这时所用到的就是单调队列了。

定义

顾名思义,单调队列的重点分为「单调」和「队列」。

「单调」指的是元素的「规律」——递增(或递减)。

「队列」指的是元素只能从队头和队尾进行操作。

Ps. 单调队列中的 "队列" 与正常的队列有一定的区别,稍后会提到

例题分析

解释

有了上面「单调队列」的概念,很容易想到用单调队列进行优化。

要求的是每连续的 \(k\) 个数中的最大(最小)值,很明显,当一个数进入所要 "寻找" 最大值的范围中时,若这个数比其前面(先进队)的数要大,显然,前面的数会比这个数先出队且不再可能是最大值。

也就是说——当满足以上条件时,可将前面的数 "弹出",再将该数真正 push 进队尾。

这就相当于维护了一个递减的队列,符合单调队列的定义,减少了重复的比较次数,不仅如此,由于维护出的队伍是查询范围内的且是递减的,队头必定是该查询区域内的最大值,因此输出时只需输出队头即可。

显而易见的是,在这样的算法中,每个数只要进队与出队各一次,因此时间复杂度被降到了 \(O(N)\)

而由于查询区间长度是固定的,超出查询空间的值再大也不能输出,因此还需要 site 数组记录第 \(i\) 个队中的数在原数组中的位置,以弹出越界的队头。

过程

例如我们构造一个单调递增的队列会如下:

原序列为:

Text Only
1
1 3 -1 -3 5 3 6 7

因为我们始终要维护队列保证其 递增 的特点,所以会有如下的事情发生:

操作 队列状态
1 入队 {1}
3 比 1 大,3 入队 {1 3}
-1 比队列中所有元素小,所以清空队列 -1 入队 {-1}
-3 比队列中所有元素小,所以清空队列 -3 入队 {-3}
5 比 -3 大,直接入队 {-3 5}
3 比 5 小,5 出队,3 入队 {-3 3}
-3 已经在窗体外,所以 -3 出队;6 比 3 大,6 入队 {3 6}
7 比 6 大,7 入队 {3 6 7}
例题参考代码
C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#define maxn 1000100
using namespace std;
int q[maxn], a[maxn];
int n, k;

void getmin() {  // 得到这个队列里的最小值,直接找到最后的就行了
  int head = 0, tail = 0;
  for (int i = 1; i < k; i++) {
    while (head <= tail && a[q[tail]] >= a[i]) tail--;
    q[++tail] = i;
  }
  for (int i = k; i <= n; i++) {
    while (head <= tail && a[q[tail]] >= a[i]) tail--;
    q[++tail] = i;
    while (q[head] <= i - k) head++;
    printf("%d ", a[q[head]]);
  }
}

void getmax() {  // 和上面同理
  int head = 0, tail = 0;
  for (int i = 1; i < k; i++) {
    while (head <= tail && a[q[tail]] <= a[i]) tail--;
    q[++tail] = i;
  }
  for (int i = k; i <= n; i++) {
    while (head <= tail && a[q[tail]] <= a[i]) tail--;
    q[++tail] = i;
    while (q[head] <= i - k) head++;
    printf("%d ", a[q[head]]);
  }
}

int main() {
  scanf("%d%d", &n, &k);
  for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
  getmin();
  printf("\n");
  getmax();
  printf("\n");
  return 0;
}

Ps. 此处的 "队列" 跟普通队列的一大不同就在于可以从队尾进行操作,STL 中有类似的数据结构 deque。

例题 2 Luogu P2698 Flowerpot S

给出 \(N\) 滴水的坐标,\(y\) 表示水滴的高度,\(x\) 表示它下落到 \(x\) 轴的位置。每滴水以每秒 1 个单位长度的速度下落。你需要把花盆放在 \(x\) 轴上的某个位置,使得从被花盆接着的第 1 滴水开始,到被花盆接着的最后 1 滴水结束,之间的时间差至少为 \(D\)。 我们认为,只要水滴落到 \(x\) 轴上,与花盆的边沿对齐,就认为被接住。给出 \(N\) 滴水的坐标和 \(D\) 的大小,请算出最小的花盆的宽度 \(W\)\(1\leq N \leq 100000 , 1 \leq D \leq 1000000, 0 \leq x,y\leq 10^6\)

将所有水滴按照 \(x\) 坐标排序之后,题意可以转化为求一个 \(x\) 坐标差最小的区间使得这个区间内 \(y\) 坐标的最大值和最小值之差至少为 \(D\)。我们发现这道题和上一道例题有相似之处,就是都与一个区间内的最大值最小值有关,但是这道题区间的大小不确定,而且区间大小本身还是我们要求的答案。

我们依然可以使用一个递增,一个递减两个单调队列在 \(R\) 不断后移时维护 \([L,R]\) 内的最大值和最小值,不过此时我们发现,如果 \(L\) 固定,那么 \([L,R]\) 内的最大值只会越来越大,最小值只会越来越小,所以设 \(f(R) = \max[L,R]-\min[L,R]\),则 \(f(R)\) 是个关于 \(R\) 的递增函数,故 \(f(R)\geq D \Rightarrow f(r)\geq D,R\lt r \leq N\)。这说明对于每个固定的 \(L\),向右第一个满足条件的 \(R\) 就是最优答案。 所以我们整体求解的过程就是,先固定 \(L\),从前往后移动 \(R\),使用两个单调队列维护 \([L,R]\) 的最值。当找到了第一个满足条件的 \(R\),就更新答案并将 \(L\) 也向后移动。随着 \(L\) 向后移动,两个单调队列都需及时弹出队头。这样,直到 \(R\) 移到最后,每个元素依然是各进出队列一次,保证了 \(O(n)\) 的时间复杂度。

参考代码
C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
typedef long long ll;
int mxq[N], mnq[N];
int D, ans, n, hx, rx, hn, rn;

struct la {
  int x, y;

  bool operator<(const la &y) const { return x < y.x; }
} a[N];

int main() {
  scanf("%d%d", &n, &D);
  for (int i = 1; i <= n; ++i) {
    scanf("%d%d", &a[i].x, &a[i].y);
  }
  sort(a + 1, a + n + 1);
  hx = hn = 1;
  ans = 2e9;
  int L = 1;
  for (int i = 1; i <= n; ++i) {
    while (hx <= rx && a[mxq[rx]].y < a[i].y) rx--;
    mxq[++rx] = i;
    while (hn <= rn && a[mnq[rn]].y > a[i].y) rn--;
    mnq[++rn] = i;
    while (L <= i && a[mxq[hx]].y - a[mnq[hn]].y >= D) {
      ans = min(ans, a[i].x - a[L].x);
      L++;
      while (hx <= rx && mxq[hx] < L) hx++;
      while (hn <= rn && mnq[hn] < L) hn++;
    }
  }
  if (ans < 2e9)
    printf("%d\n", ans);
  else
    puts("-1");
  return 0;
}