李超线段树
引入
洛谷 4097 [HEOI2013]Segment
要求在平面直角坐标系下维护两个操作(强制在线):
- 在平面上加入一条线段。记第 \(i\) 条被插入的线段的标号为 \(i\),该线段的两个端点分别为 \((x_0,y_0)\),\((x_1,y_1)\)。
- 给定一个数 \(k\),询问与直线 \(x = k\) 相交的线段中,交点纵坐标最大的线段的编号(若有多条线段与查询直线的交点纵坐标都是最大的,则输出编号最小的线段)。特别地,若不存在线段与给定直线相交,输出 \(0\)。
数据满足:操作总数 \(1 \leq n \leq 10^5\),\(1 \leq k, x_0, x_1 \leq 39989\),\(1 \leq y_0, y_1 \leq 10^9\)。
我们发现,传统的线段树无法很好地维护这样的信息。这种情况下,李超线段树 便应运而生。
过程
我们可以把任务转化为维护如下操作:
- 加入一个一次函数,定义域为 \([l,r]\);
- 给定 \(k\),求定义域包含 \(k\) 的所有一次函数中,在 \(x=k\) 处取值最大的那个,如果有多个函数取值相同,选编号最小的。
注意
当线段垂直于 \(x\) 轴时,会出现除以零的情况。假设线段两端点分别为 \((x,y_0)\) 和 \((x,y_1)\),\(y_0<y_1\),则插入定义域为 \([x,x]\) 的一次函数 \(f(x)=0\cdot x+y_1\)。
看到区间修改,我们按照线段树解决区间问题的常见方法,给每个节点一个懒标记。每个节点 \(i\) 的懒标记都是一条线段,记为 \(l_i\),表示要用 \(l_i\) 更新该节点所表示的整个区间。
现在我们需要插入一条线段 \(f\),考虑某个被新线段 \(f\) 完整覆盖的线段树区间。若该区间无标记,直接打上用该线段更新的标记。
如果该区间已经有标记了,由于标记难以合并,只能把标记下传。但是子节点也有自己的标记,也可能产生冲突,所以我们要递归下传标记。
如图,按新线段 \(f\) 取值是否大于原标记 \(g\),我们可以把当前区间分为两个子区间。其中 肯定有一个子区间被左区间或右区间完全包含,也就是说,在两条线段中,肯定有一条线段,只可能成为左区间的答案,或者只可能成为右区间的答案。我们用这条线段递归更新对应子树,用另一条线段作为懒标记更新整个区间,这就保证了递归下传的复杂度。当一条线段只可能成为左或右区间的答案时,才会被下传,所以不用担心漏掉某些线段。
具体来说,设当前区间的中点为 \(m\),我们拿新线段 \(f\) 在中点处的值与原最优线段 \(g\) 在中点处的值作比较。
如果新线段 \(f\) 更优,则将 \(f\) 和 \(g\) 交换。那么现在考虑在中点处 \(f\) 不如 \(g\) 优的情况:
- 若在左端点处 \(f\) 更优,那么 \(f\) 和 \(g\) 必然在左半区间中产生了交点,\(f\) 只有在左区间才可能优于 \(g\),递归到左儿子中进行下传;
- 若在右端点处 \(f\) 更优,那么 \(f\) 和 \(g\) 必然在右半区间中产生了交点,\(f\) 只有在右区间才可能优于 \(g\),递归到右儿子中进行下传;
- 若在左右端点处 \(g\) 都更优,那么 \(f\) 不可能成为答案,不需要继续下传。
除了这两种情况之外,还有一种情况是 \(f\) 和 \(g\) 刚好交于中点,在程序实现时可以归入中点处 \(f\) 不如 \(g\) 优的情况,结果会往 \(f\) 更优的一个端点进行递归下传。
最后将 \(g\) 作为当前区间的懒标记。
下传标记:
实现
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
拆分线段:
实现
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 |
|
注意懒标记并不等价于在区间中点处取值最大的线段。
如图,加入黄色线段后,只有红色节点的标记被更新,而绿色节点的标记还未被改变。但在第二、三、四个绿色区间的中点处显然黄色线段取值最大。
查询时,我们可以利用标记永久化思想,在包含 \(x\) 的所有线段树区间(不超过 \(O(\log n)\) 个)的标记线段中,比较得出最终答案。
查询:
实现
C++ | |
---|---|
1 2 3 4 5 6 7 8 |
|
根据上面的描述,查询过程的时间复杂度显然为 \(O(\log n)\),而插入过程中,我们需要将原线段拆分到 \(O(\log n)\) 个区间中,对于每个区间,我们又需要花费 \(O(\log n)\) 的时间递归下传,从而插入过程的时间复杂度为 \(O(\log^2 n)\)。
[HEOI2013]Segment 参考代码
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用