树形 DP
树形 DP,即在树上进行的 DP。由于树固有的递归性质,树形 DP 一般都是递归进行的。
基础
以下面这道题为例,介绍一下树形 DP 的一般过程。
例题 洛谷 P1352 没有上司的舞会
某大学有 \(n\) 个职员,编号为 \(1 \sim N\)。他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司。现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数 \(a_i\),但是呢,如果某个职员的直接上司来参加舞会了,那么这个职员就无论如何也不肯来参加舞会了。所以,请你编程计算,邀请哪些职员可以使快乐指数最大,求最大的快乐指数。
我们设 \(f(i,0/1)\) 代表以 \(i\) 为根的子树的最优解(第二维的值为 0 代表 \(i\) 不参加舞会的情况,1 代表 \(i\) 参加舞会的情况)。
对于每个状态,都存在两种决策(其中下面的 \(x\) 都是 \(i\) 的儿子):
- 上司不参加舞会时,下属可以参加,也可以不参加,此时有 \(f(i,0) = \sum\max \{f(x,1),f(x,0)\}\);
- 上司参加舞会时,下属都不会参加,此时有 \(f(i,1) = \sum{f(x,0)} + a_i\)。
我们可以通过 DFS,在返回上一层时更新当前结点的最优解。
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
习题
树上背包
树上的背包问题,简单来说就是背包问题与树形 DP 的结合。
例题 洛谷 P2014 CTSC1997 选课
现在有 \(n\) 门课程,第 \(i\) 门课程的学分为 \(a_i\),每门课程有零门或一门先修课,有先修课的课程需要先学完其先修课,才能学习该课程。
一位学生要学习 \(m\) 门课程,求其能获得的最多学分数。
\(n,m \leq 300\)
每门课最多只有一门先修课的特点,与有根树中一个点最多只有一个父亲结点的特点类似。
因此可以想到根据这一性质建树,从而所有课程组成了一个森林的结构。为了方便起见,我们可以新增一门 \(0\) 学分的课程(设这个课程的编号为 \(0\)),作为所有无先修课课程的先修课,这样我们就将森林变成了一棵以 \(0\) 号课程为根的树。
我们设 \(f(u,i,j)\) 表示以 \(u\) 号点为根的子树中,已经遍历了 \(u\) 号点的前 \(i\) 棵子树,选了 \(j\) 门课程的最大学分。
转移的过程结合了树形 DP 和 背包 DP 的特点,我们枚举 \(u\) 点的每个子结点 \(v\),同时枚举以 \(v\) 为根的子树选了几门课程,将子树的结果合并到 \(u\) 上。
记点 \(x\) 的儿子个数为 \(s_x\),以 \(x\) 为根的子树大小为 \(\textit{siz_x}\),可以写出下面的状态转移方程:
注意上面状态转移方程中的几个限制条件,这些限制条件确保了一些无意义的状态不会被访问到。
\(f\) 的第二维可以很轻松地用滚动数组的方式省略掉,注意这时需要倒序枚举 \(j\) 的值。
可以证明,该做法的时间复杂度为 \(O(nm)\)1。
参考代码
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
习题
换根 DP
树形 DP 中的换根 DP 问题又被称为二次扫描,通常不会指定根结点,并且根结点的变化会对一些值,例如子结点深度和、点权和等产生影响。
通常需要两次 DFS,第一次 DFS 预处理诸如深度,点权和之类的信息,在第二次 DFS 开始运行换根动态规划。
接下来以一些例题来带大家熟悉这个内容。
例题 [POI2008]STA-Station
给定一个 \(n\) 个点的树,请求出一个结点,使得以这个结点为根时,所有结点的深度之和最大。
不妨令 \(u\) 为当前结点,\(v\) 为当前结点的子结点。首先需要用 \(s_i\) 来表示以 \(i\) 为根的子树中的结点个数,并且有 \(s_u=1+\sum s_v\)。显然需要一次 DFS 来计算所有的 \(s_i\),这次的 DFS 就是预处理,我们得到了以某个结点为根时其子树中的结点总数。
考虑状态转移,这里就是体现"换根"的地方了。令 \(f_u\) 为以 \(u\) 为根时,所有结点的深度之和。
\(f_v\leftarrow f_u\) 可以体现换根,即以 \(u\) 为根转移到以 \(v\) 为根。显然在换根的转移过程中,以 \(v\) 为根或以 \(u\) 为根会导致其子树中的结点的深度产生改变。具体表现为:
-
所有在 \(v\) 的子树上的结点深度都减少了一,那么总深度和就减少了 \(s_v\);
-
所有不在 \(v\) 的子树上的结点深度都增加了一,那么总深度和就增加了 \(n-s_v\);
根据这两个条件就可以推出状态转移方程 \(f_v = f_u - s_v + n - s_v=f_u + n - 2 \times s_v\)。
于是在第二次 DFS 遍历整棵树并状态转移 \(f_v=f_u + n - 2 \times s_v\),那么就能求出以每个结点为根时的深度和了。最后只需要遍历一次所有根结点深度和就可以求出答案。
参考代码
C++ | |
---|---|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
|
习题
参考资料与注释
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用