4-4 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are defined by recurrence \(\text{(3.22)}\). We shall use the technique of generating functions to solve the Fibonacci recurrence. Define the generating function (or formal power series) \(\mathcal F\) as
\[ \begin{aligned} \mathcal F(z) & = \sum_{i = 0}^{\infty} F_iz^i \\\\ & = 0 + z + z^2 + 2z^3 + 3z^4 + 5z^5 + 8z^6 + 13z^7 + 21z^8 + \cdots, \end{aligned} \]where \(F_i\) is the \(i\)th Fibonacci number.
a. Show that \(\mathcal F(z) = z + z\mathcal F(z) + z^2\mathcal F\).
b. Show that
\[ \begin{aligned} \mathcal F(z) & = \frac{z}{1 - z - z^2} \\\\ & = \frac{z}{(1 - \phi z)(1 - \hat\phi z)} \\\\ & = \frac{1}{\sqrt 5}\Big(\frac{1}{1 - \phi z} - \frac{1}{1 - \hat{\phi} z}\Big), \end{aligned} \]where
\(\phi = \frac{1 + \sqrt 5}{2} = 1.61803\ldots\)
and
\(\hat\phi = \frac{1 - \sqrt 5}{2} = -0.61803\ldots\)
c. Show that
\[\mathcal F(z) = \sum_{i = 0}^{\infty}\frac{1}{\sqrt 5}(\phi^i - \hat{\phi}^i)z^i.\]d. Use part \(c\) to prove that \(F_i = \phi^i / \sqrt 5\) for \(i > 0\), rounded to the nearest integer. (\(\textit{Hint:}\) Observe that \(|\hat{\phi}| < 1\).)
a.
b. Note that \(\phi - \hat\phi = \sqrt 5\), \(\phi + \hat\phi = 1\) and \(\phi\hat\phi = - 1\).
c. We have \(\frac{1}{1 - x} = \sum_{k = 0}^{\infty}x^k\), when \(|x| < 1\), thus
d. \(\mathcal F(z) = \sum_{i = 0}^{\infty}\alpha_i z^i\) where \(\alpha_i = \frac{\phi^i - \hat{\phi}^i}{\sqrt 5}\). From this follows that \(\alpha_i = F_i\), that is
For \(i = 1\), \(\phi / \sqrt 5 = (\sqrt 5 + 5) / 10 > 0.5\). For \(i > 2\), \(|\hat{\phi}^i| < 0.5\).
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用