Top-k 问题
Question
给定一个长度为 \(n\) 的无序数组 nums
,请返回数组中最大的 \(k\) 个元素。
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
方法一:遍历选择
我们可以进行下图所示的 \(k\) 轮遍历,分别在每轮中提取第 \(1\)、\(2\)、\(\dots\)、\(k\) 大的元素,时间复杂度为 \(O(nk)\) 。
此方法只适用于 \(k \ll n\) 的情况,因为当 \(k\) 与 \(n\) 比较接近时,其时间复杂度趋向于 \(O(n^2)\) ,非常耗时。
Tip
当 \(k = n\) 时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
方法二:排序
如下图所示,我们可以先对数组 nums
进行排序,再返回最右边的 \(k\) 个元素,时间复杂度为 \(O(n \log n)\) 。
显然,该方法“超额”完成任务了,因为我们只需找出最大的 \(k\) 个元素即可,而不需要排序其他元素。
方法三:堆
我们可以基于堆更加高效地解决 Top-k 问题,流程如下图所示。
- 初始化一个小顶堆,其堆顶元素最小。
- 先将数组的前 \(k\) 个元素依次入堆。
- 从第 \(k + 1\) 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
- 遍历完成后,堆中保存的就是最大的 \(k\) 个元素。
示例代码如下:
Text Only | |
---|---|
1 |
|
总共执行了 \(n\) 轮入堆和出堆,堆的最大长度为 \(k\) ,因此时间复杂度为 \(O(n \log k)\) 。该方法的效率很高,当 \(k\) 较小时,时间复杂度趋向 \(O(n)\) ;当 \(k\) 较大时,时间复杂度不会超过 \(O(n \log n)\) 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 \(k\) 个元素的动态更新。
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用