图的遍历
树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作图的一种特例。显然,树的遍历操作也是图的遍历操作的一种特例。
图和树都需要应用搜索算法来实现遍历操作。图的遍历方式也可分为两种:广度优先遍历和深度优先遍历。
广度优先遍历
广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外扩张。如下图所示,从左上角顶点出发,首先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。
算法实现
BFS 通常借助队列来实现,代码如下所示。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。
- 将遍历起始顶点
startVet
加入队列,并开启循环。 - 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
- 循环步骤
2.
,直到所有顶点被访问完毕后结束。
为了防止重复遍历顶点,我们需要借助一个哈希集合 visited
来记录哪些节点已被访问。
Tip
哈希集合可以看作一个只存储 key
而不存储 value
的哈希表,它可以在 \(O(1)\) 时间复杂度下进行 key
的增删查改操作。根据 key
的唯一性,哈希集合通常用于数据去重等场景。
Text Only | |
---|---|
1 |
|
代码相对抽象,建议对照下图来加深理解。
广度优先遍历的序列是否唯一?
不唯一。广度优先遍历只要求按“由近及远”的顺序遍历,而多个相同距离的顶点的遍历顺序允许被任意打乱。以上图为例,顶点 \(1\)、\(3\) 的访问顺序可以交换,顶点 \(2\)、\(4\)、\(6\) 的访问顺序也可以任意交换。
复杂度分析
时间复杂度:所有顶点都会入队并出队一次,使用 \(O(|V|)\) 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 \(2\) 次,使用 \(O(2|E|)\) 时间;总体使用 \(O(|V| + |E|)\) 时间。
空间复杂度:列表 res
,哈希集合 visited
,队列 que
中的顶点数量最多为 \(|V|\) ,使用 \(O(|V|)\) 空间。
深度优先遍历
深度优先遍历是一种优先走到底、无路可走再回头的遍历方式。如下图所示,从左上角顶点出发,访问当前顶点的某个邻接顶点,直到走到尽头时返回,再继续走到尽头并返回,以此类推,直至所有顶点遍历完成。
算法实现
这种“走到尽头再返回”的算法范式通常基于递归来实现。与广度优先遍历类似,在深度优先遍历中,我们也需要借助一个哈希集合 visited
来记录已被访问的顶点,以避免重复访问顶点。
Text Only | |
---|---|
1 |
|
深度优先遍历的算法流程如下图所示。
- 直虚线代表向下递推,表示开启了一个新的递归方法来访问新顶点。
- 曲虚线代表向上回溯,表示此递归方法已经返回,回溯到了开启此方法的位置。
为了加深理解,建议将下图与代码结合起来,在脑中模拟(或者用笔画下来)整个 DFS 过程,包括每个递归方法何时开启、何时返回。
深度优先遍历的序列是否唯一?
与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都可以,即邻接顶点的顺序可以任意打乱,都是深度优先遍历。
以树的遍历为例,“根 \(\rightarrow\) 左 \(\rightarrow\) 右”“左 \(\rightarrow\) 根 \(\rightarrow\) 右”“左 \(\rightarrow\) 右 \(\rightarrow\) 根”分别对应前序、中序、后序遍历,它们展示了三种遍历优先级,然而这三者都属于深度优先遍历。
复杂度分析
时间复杂度:所有顶点都会被访问 \(1\) 次,使用 \(O(|V|)\) 时间;所有边都会被访问 \(2\) 次,使用 \(O(2|E|)\) 时间;总体使用 \(O(|V| + |E|)\) 时间。
空间复杂度:列表 res
,哈希集合 visited
顶点数量最多为 \(|V|\) ,递归深度最大为 \(|V|\) ,因此使用 \(O(|V|)\) 空间。
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用