0-1 背包问题
背包问题是一个非常好的动态规划入门题目,是动态规划中最常见的问题形式。其具有很多变种,例如 0-1 背包问题、完全背包问题、多重背包问题等。
在本节中,我们先来求解最常见的 0-1 背包问题。
Question
给定 \(n\) 个物品,第 \(i\) 个物品的重量为 \(wgt[i-1]\)、价值为 \(val[i-1]\) ,和一个容量为 \(cap\) 的背包。每个物品只能选择一次,问在限定背包容量下能放入物品的最大价值。
观察下图,由于物品编号 \(i\) 从 \(1\) 开始计数,数组索引从 \(0\) 开始计数,因此物品 \(i\) 对应重量 \(wgt[i-1]\) 和价值 \(val[i-1]\) 。
我们可以将 0-1 背包问题看作一个由 \(n\) 轮决策组成的过程,对于每个物体都有不放入和放入两种决策,因此该问题满足决策树模型。
该问题的目标是求解“在限定背包容量下能放入物品的最大价值”,因此较大概率是一个动态规划问题。
第一步:思考每轮的决策,定义状态,从而得到 \(dp\) 表
对于每个物品来说,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 \(i\) 和背包容量 \(c\) ,记为 \([i, c]\) 。
状态 \([i, c]\) 对应的子问题为:前 \(i\) 个物品在容量为 \(c\) 的背包中的最大价值,记为 \(dp[i, c]\) 。
待求解的是 \(dp[n, cap]\) ,因此需要一个尺寸为 \((n+1) \times (cap+1)\) 的二维 \(dp\) 表。
第二步:找出最优子结构,进而推导出状态转移方程
当我们做出物品 \(i\) 的决策后,剩余的是前 \(i-1\) 个物品决策的子问题,可分为以下两种情况。
- 不放入物品 \(i\) :背包容量不变,状态变化为 \([i-1, c]\) 。
- 放入物品 \(i\) :背包容量减少 \(wgt[i-1]\) ,价值增加 \(val[i-1]\) ,状态变化为 \([i-1, c-wgt[i-1]]\) 。
上述分析向我们揭示了本题的最优子结构:最大价值 \(dp[i, c]\) 等于不放入物品 \(i\) 和放入物品 \(i\) 两种方案中价值更大的那一个。由此可推导出状态转移方程:
需要注意的是,若当前物品重量 \(wgt[i - 1]\) 超出剩余背包容量 \(c\) ,则只能选择不放入背包。
第三步:确定边界条件和状态转移顺序
当无物品或背包容量为 \(0\) 时最大价值为 \(0\) ,即首列 \(dp[i, 0]\) 和首行 \(dp[0, c]\) 都等于 \(0\) 。
当前状态 \([i, c]\) 从上方的状态 \([i-1, c]\) 和左上方的状态 \([i-1, c-wgt[i-1]]\) 转移而来,因此通过两层循环正序遍历整个 \(dp\) 表即可。
根据以上分析,我们接下来按顺序实现暴力搜索、记忆化搜索、动态规划解法。
方法一:暴力搜索
搜索代码包含以下要素。
- 递归参数:状态 \([i, c]\) 。
- 返回值:子问题的解 \(dp[i, c]\) 。
- 终止条件:当物品编号越界 \(i = 0\) 或背包剩余容量为 \(0\) 时,终止递归并返回价值 \(0\) 。
- 剪枝:若当前物品重量超出背包剩余容量,则只能选择不放入背包。
Text Only | |
---|---|
1 |
|
如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此时间复杂度为 \(O(2^n)\) 。
观察递归树,容易发现其中存在重叠子问题,例如 \(dp[1, 10]\) 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。
方法二:记忆化搜索
为了保证重叠子问题只被计算一次,我们借助记忆列表 mem
来记录子问题的解,其中 mem[i][c]
对应 \(dp[i, c]\) 。
引入记忆化之后,时间复杂度取决于子问题数量,也就是 \(O(n \times cap)\) 。实现代码如下:
Text Only | |
---|---|
1 |
|
下图展示了在记忆化搜索中被剪掉的搜索分支。
方法三:动态规划
动态规划实质上就是在状态转移中填充 \(dp\) 表的过程,代码如下所示:
Text Only | |
---|---|
1 |
|
如下图所示,时间复杂度和空间复杂度都由数组 dp
大小决定,即 \(O(n \times cap)\) 。
空间优化
由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 \(O(n^2)\) 降至 \(O(n)\) 。
进一步思考,我们能否仅用一个数组实现空间优化呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 \(i\) 行时,该数组存储的仍然是第 \(i-1\) 行的状态。
- 如果采取正序遍历,那么遍历到 \(dp[i, j]\) 时,左上方 \(dp[i-1, 1]\) ~ \(dp[i-1, j-1]\) 值可能已经被覆盖,此时就无法得到正确的状态转移结果。
- 如果采取倒序遍历,则不会发生覆盖问题,状态转移可以正确进行。
下图展示了在单个数组下从第 \(i = 1\) 行转换至第 \(i = 2\) 行的过程。请思考正序遍历和倒序遍历的区别。
在代码实现中,我们仅需将数组 dp
的第一维 \(i\) 直接删除,并且把内循环更改为倒序遍历即可:
Text Only | |
---|---|
1 |
|
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用