空间复杂度
空间复杂度(space complexity)用于衡量算法占用内存空间随着数据量变大时的增长趋势。这个概念与时间复杂度非常类似,只需将“运行时间”替换为“占用内存空间”。
算法相关空间
算法在运行过程中使用的内存空间主要包括以下几种。
- 输入空间:用于存储算法的输入数据。
- 暂存空间:用于存储算法在运行过程中的变量、对象、函数上下文等数据。
- 输出空间:用于存储算法的输出数据。
一般情况下,空间复杂度的统计范围是“暂存空间”加上“输出空间”。
暂存空间可以进一步划分为三个部分。
- 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
- 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
- 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。
在分析一段程序的空间复杂度时,我们通常统计暂存数据、栈帧空间和输出数据三部分,如下图所示。
相关代码如下:
推算方法
空间复杂度的推算方法与时间复杂度大致相同,只需将统计对象从“操作数量”转为“使用空间大小”。
而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。
观察以下代码,最差空间复杂度中的“最差”有两层含义。
- 以最差输入数据为准:当 \(n < 10\) 时,空间复杂度为 \(O(1)\) ;但当 \(n > 10\) 时,初始化的数组
nums
占用 \(O(n)\) 空间,因此最差空间复杂度为 \(O(n)\) 。
- 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用 \(O(1)\) 空间;当初始化数组
nums
时,程序占用 \(O(n)\) 空间,因此最差空间复杂度为 \(O(n)\) 。
在递归函数中,需要注意统计栈帧空间。观察以下代码:
函数 loop()
和 recur()
的时间复杂度都为 \(O(n)\) ,但空间复杂度不同。
- 函数
loop()
在循环中调用了 \(n\) 次 function()
,每轮中的 function()
都返回并释放了栈帧空间,因此空间复杂度仍为 \(O(1)\) 。
- 递归函数
recur()
在运行过程中会同时存在 \(n\) 个未返回的 recur()
,从而占用 \(O(n)\) 的栈帧空间。
常见类型
设输入数据大小为 \(n\) ,下图展示了常见的空间复杂度类型(从低到高排列)。
\[
\begin{aligned}
O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{平方阶} < \text{指数阶}
\end{aligned}
\]
常数阶 \(O(1)\)
常数阶常见于数量与输入数据大小 \(n\) 无关的常量、变量、对象。
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,因此不会累积占用空间,空间复杂度仍为 \(O(1)\) :
Text Only |
---|
| [file]{space_complexity}-[class]{}-[func]{constant}
|
线性阶 \(O(n)\)
线性阶常见于元素数量与 \(n\) 成正比的数组、链表、栈、队列等:
Text Only |
---|
| [file]{space_complexity}-[class]{}-[func]{linear}
|
如下图所示,此函数的递归深度为 \(n\) ,即同时存在 \(n\) 个未返回的 linear_recur()
函数,使用 \(O(n)\) 大小的栈帧空间:
Text Only |
---|
| [file]{space_complexity}-[class]{}-[func]{linear_recur}
|
平方阶 \(O(n^2)\)
平方阶常见于矩阵和图,元素数量与 \(n\) 成平方关系:
Text Only |
---|
| [file]{space_complexity}-[class]{}-[func]{quadratic}
|
如下图所示,该函数的递归深度为 \(n\) ,在每个递归函数中都初始化了一个数组,长度分别为 \(n\)、\(n-1\)、\(\dots\)、\(2\)、\(1\) ,平均长度为 \(n / 2\) ,因此总体占用 \(O(n^2)\) 空间:
Text Only |
---|
| [file]{space_complexity}-[class]{}-[func]{quadratic_recur}
|
指数阶 \(O(2^n)\)
指数阶常见于二叉树。观察下图,层数为 \(n\) 的“满二叉树”的节点数量为 \(2^n - 1\) ,占用 \(O(2^n)\) 空间:
Text Only |
---|
| [file]{space_complexity}-[class]{}-[func]{build_tree}
|
对数阶 \(O(\log n)\)
对数阶常见于分治算法。例如归并排序,输入长度为 \(n\) 的数组,每轮递归将数组从中点处划分为两半,形成高度为 \(\log n\) 的递归树,使用 \(O(\log n)\) 栈帧空间。
再例如将数字转化为字符串,输入一个正整数 \(n\) ,它的位数为 \(\lfloor \log_{10} n \rfloor + 1\) ,即对应字符串长度为 \(\lfloor \log_{10} n \rfloor + 1\) ,因此空间复杂度为 \(O(\log_{10} n + 1) = O(\log n)\) 。
权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常非常困难。
降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。
本页面的全部内容在 小熊老师 - 莆田青少年编程俱乐部 0594codes.cn 协议之条款下提供,附加条款亦可能应用